If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6k^2-12k+5=0
a = 6; b = -12; c = +5;
Δ = b2-4ac
Δ = -122-4·6·5
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-2\sqrt{6}}{2*6}=\frac{12-2\sqrt{6}}{12} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+2\sqrt{6}}{2*6}=\frac{12+2\sqrt{6}}{12} $
| 8x-5x-5=14 | | 0.6•x=210 | | 3+6z=13=6z | | 11z=−66 | | -11z=−66 | | 0.4x+x=140 | | x+.75x=20 | | w-15=1,125 | | -24=3/8p | | x°+7x-8=0 | | x÷3=294 | | 5(x-5)=21 | | 8r+2 =23 | | 5y+5=4y−6 | | 22m=34m | | 4-8x=20-4x | | 90+5x=188 | | 3x+-4=13 | | y=80,000(1.04) | | 0=2(x^2+7x-98) | | (4k+5)+(6k+10)+65=180 | | (4k+5)+(6k+10)+115=180 | | y=1500(.9) | | 4,920b=40 | | 216=x/(x+1) | | 6(x+2)-5=4x+15 | | 4x+9=11x-6 | | 1345=140x+85 | | 7+f=0 | | 1,345=140x+85 | | 18j-27=0 | | m+20=m-6 |